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INTERNAL BALLISTICS OF PONDER DRIVEN ROCKETS
! /

Abstract

An approximate theory of the internal ballistics of rockets
driven by colloidal propellants is developed in this report. A
number of approximate relationships are derived which may be of
use in preliminary design work. Particular emphasis is placed
on the case of a constant chamber pressure. Included in the
report are sample design calculations for a 3-in. 15-lb shell.
The calculations are summarized on graphs which show the weight
of TNT that can be carried as a function of the propellant
charge weight, chamber pressure and muzzle velocity. The
results show that the largest weight of TNT can be carried when
the operating pressure is between 25 and 50 atmos. This result
is then shown to apply equally well to all shells geometrically
similar to the one considered.

The theory developed in this report is necessarily approx-

imate in the following respects:

(a) In formulating the law of burning, heat losses in

walls are neglected. This means that no account is taken of

the fact that the mean temperature of the gas in the rocket

chamber is less than the temperature of the layer of gas im-

mediately adjacent to the burning surface.

(b) The mass of gas discharged through the nozzle of the

rocket is calculated on the assumption that the steady flow

formulas may be applied to variable flow problems on a quasi-

steady state basis. A more rigorous treatment of this problem

does not seem to be available at this time.

I/ This report is a revision of one of October 29, 19h0.
For other material pertinent to the present subject, see C. N.
Hickman, NDRC Report A-h, Appendix D; C. N. Hickman,
Memos. A-18M to A-22M; J.W.M. Du/Fond, NDRC Report A-2h. The
last-named report is a relatively elementary treatment of the
mechanical efficiency of rockets.



(c) The variation in gas temperature in the initial stages

of burning is ignored. While this simplification yields a cor-

rect prediction of the equilibrium pressure, it may at times

lead to incorrect results in the prediction of how soon equil)b-

rium is reached.

() Effects of friction are ignored.

The English system of units based on the pound as the unit

of force and slug as the unit of mass is used throughout the

report. The list of symbols used is given in the Appendix.

I. Basic equation

The basic equation connecting the rate of burning and the

rate of gas discharge is that the mass burned up to time t is

equal to the mass of gas in the chamber plus the total mass of

gas discharged. An equivalent statement is that the rate at

which the propellant is consumed equals the rate at which the

gas is discharged plus the rate at which the mass of gas inside

the chamber changes; in symbols,

m = 'd + (dm,/dt), (1)

where' is the mass (slugs) of propellant burned per second,

md is the mass (slugs) of gas discharged per second and mc is

the mass (slugs) of gas in the chamber at the time t.

2. Law of burning

From the outset we shall restrict the treatment to the case

of constant burning surface, such as a tube burning on its

inside and outside curved surfaces, or a solid cylinder burning

i , I I I I I I I I I . ...
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only on its flat ends. Let D be the dimension of the propellant

along the line of burning. This quantity is so defined that D

is the greatest depth burned away below any receding surface

before the whole grain is consumed. In the case of a tube, D

is the wall thickness. For a cylinder burning from both of

its flat ends, D is the length of the cylinder. If the cylinder

burns from only one end, D is taken as twice the length of the

cylinder. It is easy to see that, in the cases cited, the

definition is satisfied. For example, in the tube, the wall

burns a distance jD from the inside and a distance 2D from

the outside.

With this understanding, we take as the law of burning,

dZDgob BP, (2)

where Z is the fraction of the propellant consumed at time t,

b and B are constants of the specific propellant used, and P

is the chamber pressure (lb/ft2). The physical meaning of

Eq. (2) can be shown as follows.

If it is assumed that the burning takes place by parallel

layers and that the total burning surface is constant, the

fractional mass of propellant consumed will be proportional to

D Z, the total depth burned away. Hence D(dZ/dt) must be the

total distance that the flame travels per second* That is to

say, if the flame velocity is, say, 1 ft/sec, then D(dZ/dt)

will be 2 ft/sec for the two burning surfaces. It is also

clear that b has the dimensions of a velocity (ft/sec) and

that B is a velocityper unit of pressure [(ft/sec)/(lb/ft')].

A
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It should be remarked that this form of the burning law

has been strongly criticized in the past because it is not
• 2/

correct either physically or philosophically.- However,

the writer has found that it appears to be the only simple

relationship using the burning constants determined from

closed-bomb experiments that correctly predicts the equilib-

rium pressure in rockets. For example, the theoretical law

2/derived by Crow and Grimshaw / fits the experiments with bombs

but for rockets gives materially incorrect values of the

equilibrium pressure attained as a function of the ratio of

burning area to throat area. Just why apparently equivalent

laws should give different results is not yet clear to the

writer.

3. Additional relationships

The remaining equations necessary for the formulation of

the problem are

m= m dZ/dt, (3)

where is the intial mass of the propellant. The gas

equation, assuming that the gas can be regarded as an ideal

gas, is

Pv;,T;. (4

where P is the pressure (lb/ft'), v is the specific volume

(ft3/slug), R is the gas constant (R = 1930 ft lb/slug °F)

and T is the combustion temperature ( F absolute).

2/ In particular, see Crow and Grimshaw, Phil. Trans.
Roy, Soc. (London) 23Q" A691, pages 387-411 (1232).

, , i! I
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Also, the instantaneous value of the mass of gas in the

chamber is given by

mc = V/v, (5)

where V (ft3), the instantaneous gas volume in the chamber,

may be expressed as

V = V0 + (m/,.) Z = V, + Vp Z, (6)

Vo being the initial, or clearance, volume (ft
3 ) Vpthe volume

of the propellant (ft3) and 6 the density of the propellant

(slug/ft3).

Finally, the rate of gas discharge may be written as

md = kP, (7)

if the chamber pressure does not fall below about 4300 lb/ft ,

or 2 atmos, above zero pressure. The constant k has the value

k = tj"Ta + 1 (8)6

or

k =13A (8a)

where At is the throat area of the nozzle (ft2 ), is the

adiabatic constant -- that is, the ratio of the specific heats

at constant pressure and ' volume -- and the factor /* , which

represents the quantities under the radical in Eq. (8), is a

constant that depends on the properties of the specific pro-

pellant used.

4. Equilibrium pressures

By combining Eqs. (4), (5) and (6) we can write the expres-

sion for the mass of gas in the chamber as

mc = (V0 + VpZ)P/RT. (9)
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Equation (1) may then be written as

* 1 d
md + RT dt[(Vo+VpZ)P]

1 1 d dZ
'rod +RT dZ [(Vo VpZ)P]

or, upon eliminating dZ/dt by means of Eq. (3),

m + (1/RT) P Vp + (V +V Z) dP (m/m).

Solving for the derivative dP/dZ, we obtain

dP KRri [1 - (;d/;)I - P VP
Z +V z (10)vo p

For equilibrium, dP/dZ must be zero. The equilibrium pressure

is therefore given by

RTm mdPe _TV_ (1 )

But m /V is the density S of the propellant, and RTS is
tp

the bomb pressure that would exist with 100 percent density

of loading if the temperature were that for burning at constant

pressure. Let this pressur.ej;e denoted by Pb. Then

pb

This result is important and requires some comment. First

of all, it holds independently of any particular law of burning.

It is true whether the temperature transient is taken into

account or not. It shows that, for an equilibrium pressure to

exist, the rate of discharge must be less than the rate of

burning. Finally, it shows that the value of the equilibrium

pressure is apt to be critical as to factors that affect either
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the burning or the discharge rates. This is so because Pb is

of the order of 200,000 lb/in.2 , and the value of Pe desired

for rocket work hardly ever reaches 10,000 lb/in.2

If the burning law, Eq. (2), and discharge rate law,

Eq. (7), are substituted into Eq. (10), there results

k Pe Pe

m B + Pb
D B e)

Let

mTB/D = C, (12)

b/BPb = (13)

and

The equation that gives the (dimensionless) equilibrium pres-

sure ratio explicitly is

A 2 + X [(k/C) + - ] . (14)
e +-

Instead of solving for A el it is more convenient to solve for

k/C in terms of the equilibrium value; thus

k/C e + I -e(- e .  (15)

If S is the total burning area,

m ' S SD. (15a)

Then

k/C = 2( At/ SSB,

or

A 2--"(- + 1 - (16)

S 2/5 r\ee
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5. .Variation of pressure-witi S/At, the ratio of burningarea

to throat area

To see how these considerations work. out, consider a

propellant particularly well adapted for rocket work; namely,

one having a composition of 40 percent nitroglycerine and

60.percent nitrocellulose, without any stabilizer, and having

properties approximately as follows:

= 1.25,

R = 1930 lb ft/slug OF,

T - 5050°F absolute, at constant pressure,

b - 0.065 ft/sec,

B = 4.5 x lO- 7 (ft/sec)/(lb/ft2),

= 3.10 slug/ft3 [= 100 lb of mass/ft3 ].

Then, from Eq. (4), Pb = 3.02 x 10 7 lb/ft2 , or 210,000 lb/in.2 ;

-4from Eqs. (8) and 8(a), /S 11.97 x 10 slug/lb sec.; from
-3

Eq. (13), 04, = 4.8o x 10o3

By assuming successive values of Xe' that is, of Pe/P

and substituting in Eq. (16), we get the curve in Fig. 4

showing the equilibrium chamber pressure in terms of the ratio

S/At. The circles and squares show experimental points for

two batches of powder. The agreement with the theoretical

curve is quite good. It will be noted that, at low pressures,

the rate of change of pressure. with area ratio S/At is small.

However, at the higher pressures, the actual pressure is quite

sensitive to comparatively spiall changes in the area ratio.
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6. Variation of pressure with fraction of propellant consumed

Returning now to the general equation (Eq. (10)] we can

rewrite it in the dimensionless form

dZ d (7)

(Vo/Vp + z - + ((k/c) + ( o(

Let us assume that the pressure is initially brought up

to some value P by means of a black powder charge. Then0

Eq. (17) can be integrated if we note that

S = Po/P when Z 0.o o

The solution is

A E(Ao/'e) - I] (Xe +

e e V ( e2+ e)/X

N+ CO(1+ VPZ) 
2o e(Vo 0e e2

0

This rather formidable looking equation purports to show how

the actual pressure approaches the equilibrium pressure as a

function of the fraction burned. It will be noticed that if

0 =  e - that is, if the black powder charge starts the

combustion off at just the right pressure -- the pressure

throughout the burning interval will be the equilibrium pres-

sure. For other values of the initial pressure, the results

are more complex. Figure 3 shows /A'e plotted as a function

of (Vp/Vo)Z for pairs of values of ?\ e and (O/

It will be noted that the curves of Fig. 3 have a dual

significance. The abscissa is (Vp/Vo)Z. Hence for Z = 1

the curves give the pressures attained for various densities

of loading at the end of the combustion period. For Z <. ' and
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cpnstant loading density the curves show the manner in which

the pressure builds up with'the fractional mass of propellant

consumed. For example, consider the curve marked

Xe = 0.01l, / \0 6 - 0.5. This means that we are considering

the case where the equilibrium pressure is 0.01 x 210,000, or

2100 lb/in.2  Suppose the design is such that V V 2,

which corresponds to a density of loading of 66,7 percent.

Then, since the propellant is all consumed when Z = 1, we see

that, for (Vp/Vo)Z = 2, A/A e = 0.7, or the pressure reached

is 1470 lb/in.2 ; that is, the equilibrium pressure is not

reached (according to this equation) during the combustion

process. If we wish to know the pressure when the combustion

is 30 percent complete, Z = 0.3, and (V p/V )Z = 0.6. The

ordinate is O.605and hence the pressure reached is

0.605 x 210,000, or 1270 lb/in.2  If the density of loading

is increased, the same curve shows that the final pressure

approaches the equilibrium value of 2100 lb/in.2, and for

100 percent density of loading -- that is, VIVo --

equilibrium is reached at the very end of the process.

For lower values of the equilibrium pressure, say

e - 00025, or a pressure of 525 lb/in.2, the approach to

equilibrium tends to be more rapid, but it is still not

completed. A similar situation is predicted if the initial

pressure is higher than the equilibrium value.

These predictions are only partially confirmed by experi-

ment. hile the evidence is still not complete, it appears
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that in most practical cases, the pressure builds up to the

equilibrium value quite rapidly and stays there until the com-

bustion is completed. By a "practical case" is meant one

where the density of loading exceeds, say, 25 percent and the

burning time exceeds, say, 0.03 sec. Under these conditions

the equilibrium pressure is quickly reached even for very low

starting pressures.

On the other hand, if the burning is very rapid, lasting,

say, O.O1 sec, the equilibrium pressure is never reached. Also,

if the density of loading is small, equilibrium is not attained

even when the combustion lasts as long as 0.3 sec. The experi-

mental curves appear quite similar to those in Fig. .3, .even in

respect to the effect of initial pressure.

In view of the only partial agreement between experiment

and the simple theory used here and the lack of a criterion of

applicability, we are forced to conclude that the theory cannot

be relied on to predict the transient state. However, it does

appear to predict equilibrium values with a reasonable degree

of accuracy. Hence, for design work, a simple theory of this

type is adequate for most purposes when tempered by a knowledge

of experimental results,

It may be remarked here that, for the case of constant

pressure, the burning time T may be calculated from Eq.(2).

This equation becomes, for this case,

T= D/(b + BP). (18a)
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In design calculations, once the throat area At is known, the

time T may be aloo calculated from the equation

T = mt/md mt/ Atp

7. Exit velocities of gas in simple convergent nozzles and

in expanding nozzles

On the assumption that the chamber pressure is never less

than about 2 atmos and that the gas flow is steady, the usual

engineering formulas for frictionless adiabatic flow give the

gas velocity at the nozzle as

wt = Vy2 e RT/( + 1), (19)

and the gas exit velocity from an expanding nozzle as

2 RT l 1  Gl) 1
Win 1 1 (20)

If the nozzle is cut off at the throat, then Eq.(19) of

course gives the exit velocity for a simple convergent nozzle.

In Eq.(20), P is the chamber pressure and P is the pressure

at the mouth of the nozzle. The latter is not necessarily the

atmospheric pressure. If the nozzle under-expands, the

pressure P is higher than atmospheric; this results in a
m

decreased jet velocity which is partially compensated for by

the thrust developed by the pressure in excess of atmospheric.

If the nozzle over-expands the situation is quite complicated.

An excellent treatment of these effects can be found in an

article by F, J, Malina.-
/

3/ J. Franklin Institute 230, 433-451 (1940).

.... ....... ..... ........ ...... .... ... ... ,, , ... .



C3

EkN

fa,.



_____ 
---

K

0



AA

/ 4,

~i"Ae ci~dA0/Ae

0, o/



J 290 - - - - --- _ _ _ _ _ - - -.

270

230 -- - -6 ---

2/0- V --

1.90~~~ /- --

/50---- -

/30 -

Io -L

d71'fferd',7/ /0b o/?-' /0o wdet o, 0).



- 17 -

For the propellant already referred to in Sec. 5, these

gas velocities are

wt = 3280 ft/sec (19a)

and o

w = 9850 1 1 (20a)

Note that, with this propellant, the highest velocity possible,

(with infinite pressure ratio) is 9850 ft/sec. The effect of

finite pressure ratios can be seen from Fig. 1.

It should be also remembered that the mass of gas dis-

charged per second is given by Eq.(7) for both types of nozzles.

Moreover, the pressure at the throat for both types is given by

i 2 (2/(1-1
Pt NP 2+ ' (21)

or

Pt = 0.555 P (21a)

for the propellant here considered.

8. Exit area

The standard formula for the nozzle mouth area A is-/
m

+1 ,(22)
At

which, for the specific propellant here considered, becomes

A 0.208 (P 1

At L.200 (22a)

Mt For the theory of expanding nozzles see, for example,-
Martin, Textbook of mechanics, vol.V, "Thermodynamics", pp.230-236.
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The plot of this function appears in Fig. 2. One should note

that, in actual designs, i is frequently impracticable to use

full expansion. That is, A is really fixed by the diameter

of the projectile rather than by theoretical considerations.

In such cases, Fig. 2 can be used to find the pressure drop

when the areas are prescribed.

9,. Comparison of thrusts obtained with a simple convergent
nozzle and with an expanding nozzle for the case of
constant pressure

Assume that the orifice area of the simple nozzle is the

same as the throat area At of the expanding nozzle. The

thrust Ft (lb) is the time rate of change of momentum

(slug ft/sec2) plus the unbalanced force (lb) acting on the

orifice area, or

F t  d wt + At (Pt-Pa). (23)

For practical purposes the atmospheric pressure Pa may be

neglected in comparison with the pressure Pt. If we then

substitute the value of rd frmq.M(7), wt from Eq.(19). and

Pt from Eq.(21), we get

P(.-. (24)

For the propellant cited (Sec, 5),

t 1.2 AtPp (24&)

The numerical factor in Eq.(24a) is called the thrust

coefficient. It is a very convenient criterion for making

comparisons in performance.,
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In the case of an expanding nozzle of correct ratio, that

is, one which expands the gas to atmospheric pressure, the

thrust is given by the first term of Eq.(23), except, of course,

that the value of the exit velocity is now Wm, not wt .  Sub-

stituting the value of wm from Eq.(ll), we get

21 M( +1/( -1) 57
F2 =At P, -" p / . (2)

Numerically,

By referring to Fig. 1 we find that, for a pressure of

200 atmos, the radical in Eq.(25a) is 0.81. In this particu-

lar case, the thrust coefficient would be 0.81 x 2.08, or L'69.

Comparing this value with that for the simple orifice [Eq.(2ha)]

we see that the thrust is improved in the ratio of 1.69 to 1.2h,

or 1.36. For lower chamber pressures, this improvement

decreases, owing to the decreasing value of the radical.

For the case of an overexpanding nozzle, reference should

be made to 1alina's paper.Y/  The method to be used in the case

of underexpansion is illustrated in Sec. 13.

10. Projectile velocity

To avoid the ccnfusion that sometimes may arise, we will

base the momentum calculations on first principles.

5/ See reference .
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Consider a rocket Of instantaneous mass Mp(t) moving to

the right and having, at time t, a velocity x relative to

the ground. Take * as positive in theright-hand direction.

An observer stationed on the rocket causes the release of a

differential mass of gas dmd with a velocity wm, this velocity

being measured relative to the rocket after the mass dmd has

been released. The observer takes the origin of his coordinate

frame as being on the rocket. Relative to this frame he calls

Wm positive when it is in the' left-hand direction.

Since it is assumed that no external forces are acting,

the law of conservation of momentum requires that the momentum

before dmd is released is equal to the algebraic sum of the

momentums of the rocket and of dmd after the latter is re-d

leased.. In other words, if the velocity of the rocket after

the release of dmd is * + d, the law of conservation of

momentum requires that

M (t)ic CM (t)-dmd] xdx] + (x+dx - wm ]d

or

o M p(t)d - w md. (26)

Since all the quantities in this equation are, in general,

functions, of the time,

t = w dmnd/M (t),

or

w t mddt/p(t), (27)

where

M (t) =M -I mdt, (28)
P o J o

' ' I II I
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M being, of course, the initial mass of the loaded projectile.
0

Formally, at least, the problem of calculating the

velocity is solved. Actually, in the general case, the function

w is of such nature that any expression containing it is notm

likely to be integrable by any except numerical methods.

However, for the special case of a constant chamber pres-

sure, the integration is quite simple because w and md arem d

both constants. For this casethen,

Ot
I dt

= w nd t dt w log (29)
m i .-od m '. "-mdt

o do d

When the combustion ceases, at t V , the chamber is still

filled with gas, which then escapes at a constantly diminish-

ing velocity. If the momentu, of this residue is neglected,

we may assume that

m T. = m ,(30)
d

Making this substitution in Eq.(29), we obtain for x1 , the

maximum, or muzzle, velocity of the projectile,

= Wm log . (31)

The following relationships are sometimes useful:

(a) If H0 is the mass of the shell without propellant,

mM = VM (e I/wm - 1). (32)

(b) If the ratio m /M° is sufficiently small,

x =+ + (33)

0 0*
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For this condition, the acceleration of the projectile is

approximately constant during the burning period.

11. Efficiency for the case of a constant chamber pressure

The expression for the efficiency is

Kinetic energy of projectile at muzzle

Heat energy of propellant

or

E = l[om ]I/J H m , (3h)

where J is the mechanical equivalent of heat, which is equal

to 778 ft lb/Btu, and H is the heat of combustion, expressed

in British thermal units (Btu) per slug of propellant. But,

according to Eq.(29)

2~ [~log 0 1
51-m J
0

and, according to Eq.(20),

2 XR T F PO -)X
2

Wa P

hence

-_ P L log ( 0/mr)-i (3)

But the gas constant expressed in heat units -- that is)

R/J (Btu/slug 6F) - is merely the difference of the mean

specific heats at constant pressure and at constant volume,

provided the gas may be treated as ideal; in other words,

R - v .  (36)

, , i i I I II I I



-23-

Moreover, since most of the combustion takes place under constant

pressure, and in view of the simplification it introduces, the

equation

H {=T (37)P

is taken to represent the complete process. Combining

Eqs.(36) and (37), we have

RT/JH = (7- E = (X -I)/? . (38)

Let

0M = ,

Then Eq.(35) becomes

E = - • )[log]2.

The form of the functions Pm/P and o<( are shown in

Figs. 1 and 5, respectively. The latter curve shows that the

best value of oc' is 1.25, which means that, of the projectile

weight, 80 percent is propellant and 20 percent is shell.

Assuming an infinite expansion ratio, we see that the greatest

efficiency possible is 0.65.

As a more practical example, consider a 15-lb projectile,

with 2.5 lb of propellant charge operating at 200 atmos pressure.
P , (§-W(/

Then' = 6, 1.25, 1 -6 and
= 0.65 ad! /

from Eq.(39), E 0.65 x o.168 = 0.109; that is, the effi-

ciency is almost 11 percent.
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It should be noted that Eq.(39), the expression for the

efficiency, can be split into two factors. One depends only

on the pressure ratio and is the thermal efficiency; it

measures the fraction of the heat energy that goe s into giving

kinetic energy to the jet. The second factorwhich depends only

on oQ, the ratio of the initial total weight of the projectile

to the weight of the propellant, is the propulsion efficiency;

it measures the fraction of the jet energy that is converted

into kinetic energy of the rocket itself.

Equation (39) is quite interesting in that it shows that

when the weights of the propellant and of the projectile ark

fixed, nothing can really be done about increasing the effi-

ciency.Y/ The value of 'S varies but slightly for various

proportions of combustion products. The same thing is true for

the factor I -(Pm/P) ( -I)1/K , for the pressure ratios in common

use. Even H, the heat of combustion of the propellant, drops

out of the efficiency expression.. This is not to say that the

heat of combustion H is unimportant.. As will be shown in the

next section, the muzzle velocity per unit mass of propellant

varies as the square root of H. Hence, all other factors

being equ l, the substitution of propellants having larger

heats at combustion will result in higher values of the muzzle

6/ It is true the propulsion efficiency can be increased
by giving the rocket an initial velocity. Whether the overall
efficiencr (including the energy required to impart the initial
velocity) is also ,ncreased is rather problematical.
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"2

velocity. But, since x, varies as H, no higher efficiencies

can be obtained.

12. Muzzle velocity expressed in terms of the properties of
the propellant

Assume that (m / )I<M 1 so that, in view of Eq. (32),

x = W m/A .

Hence the muzzle velocity per unit mass of propellant, namely

x1 /mT , is given by

:,/m, = 1wi/M'o

or, in view of Eq.(20), byI F
mm N

But

RT/J -= -

from Eq.(38), and therefore

-C 2J:. - M, (40o)

Thus, the larger the heat of combustion of the propellant, the

greater is the muzzle velocity per unit mass of propellant.

13. Rocket design calculations

The formulas developed in the preceding sections will now

be applied to a specific design problem. Let it be required

to calculate the mass of the propellant and the TNT load as

a function of the chamber pressure and muzzle velocity for a



- 26-

shell of diameter 3 in. and weight 15 lb, exclusive of the

propellant.

(a) Calculations of muzzle velocities. -- The procedure

followed can best be understood in connection with Table I.

He first assume that the propellant is to be furnished with

an outside diameter of 3/h in. and an inside diameter of

3/16 in., so that the web thickness D is 9/32 in., or

0.023h ft. A further assumption necessary is that the maxi-

mum outside diameter of the nozzle is the same as that of the

shell, and that the wall thickness is 1/16 in. The nozzle

mouth is then 2-7/8 in. in diameter and the exit area is

6.46 in.2

We assume a fixed mass m.1 of propellant, in this case

3 lb(O.0930 slugs). The surface area S as found from Eq.(15a)

is 369 in.2  Taking the chamber pressure as the independent

variable [see line (1), Table I], we find the corresponding

value of S/At from Fig. 4. Since S is 369 in. 2 , the corres-

ponding values of the throat area A can be found and listedt

[line (3), Table I].

The next step is to set down in line (4) the ratio of nozzle

mouth area Am to throat area At, it being known that AM is

6.h6 in. 2  Then, from Fig. 2, we find the corresponding pres-

sure expansion ratio, listed as (P/Pm)/in line (5), Table 1.

A comparison with line (2) shows that the actual expansion

ratio is appreciably smaller than the available pressure ratio.

This is caused by the fact that the exit diameter of the

nozzle is limited to the shell diameter. It therefore follows
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TABLE I. Rocket design calculations.

3 lb" S = 369 in.2  Am 
= 6.46 in. 2  D = 0.281 in.

( 1) E(lb/in.2) 368 735 1470 2940 5880 11,760

(2) P/Pm 25 50 100 200 4OO 800

( 3) A (in.2 ) 4.61 2.93 2.05 1.62 1.39 1.25t

(4) Am/At 1.40 2.20 3.17 3.99 4.65 5.17

(5) (P/pm)' 5.0 1o.4 18.2 26.0 32.0 37.0

(6) Excess Force
(ib) 380 361 427 636 1180 1960

(7) wm(ft/sec) 5210 6040 6530 6820 6950 7060

(8) Ad(lb/sec) 11.55 14.60 20.5 32.4 55.6 99.8

(9) mdWm(Ib) 1870 2740 L15o 6860 12,000 21,900

(10) F2 (lb) 2250 6820 4580 7500 13,200 23,900

(11) w'(ft/sec) 6260 6820 7210 7450 7650 7720

(12) xl(ft/sec) I140 1240 1310 1355 1390 1405

(13) Thrust Coeff. 1.32 1.44 1.52 1.57 1.61 1.63

(14) m.(lb)* 2.02 2.02 2.86 4.60 9.46 18.4

(15) m (lb)* 0.13. 0.19 0.26 0.37 0.53 0-74

(16) Nozzle and
Flange (ib) 0.27 0.53 0.66 0.73 0.76 0.78

(17) 'ZW(lb) 2.42 2.74 3.78 5.70 10.75 --

(18) 1s(in.) ll.O 10.6 9.31 6.90 0.61 --

(19) TNT (lb) 4.84 4.72 4.32 3.57 1.64 --

* These masses are expressed in pounds of mass; the values
may be converted to slugs by dividing them by 32.2. The mass
in pounds and the weight in pounds are practically equal
numerically.
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that the nozzle discharges the gases at pressures higher than

atmospheric, and An unbalanced excess pressure will exist

over the nozzle exit area. For example, for P = 368 lb/in.2

and a pressure expansion ratio of 5.0 (see the first column

of data in Table I), the pressure P is 368/5.0, orm

73.6 lb/in.2 Taking the atmospheric pressure as 14.7 lb/in.2 ,

the unbalanced pressure is 58.9 lb/in.2 , and this, acting over

6.h6 in. 2, produces an excess force of 360 lb. Line (6),

Table I, gives the excess force thus calculated for the other

pressure ratios assumed.

The other component of thrust is that caused by the

momentum of the escaping jet, The velocity wm can be cal-

culated from Eq.(20a), the value of the radical being read

from the curve in Fig. 1. The pressure ratio to be used is

that given in line (5). The rate of gas discharge Ai is
d

found from Eqs.(7), (8) and (8a); that is,

xnd = &P

the value of / being given in Sec. 5 as 11.97 slug/lb sec

for the propellant used here. The rate of discharge of the

gas is tabulated in line (), and the jet reaction mdWm is listed

in line (9).

The total thrust F2 is obviously the sum of lines (6)and(9). From

F2 the effective je velocity w' can be found; more specifi-

cally,

wl/w Column 10/column 9.

l~~ ~~ M
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The muzzle velocity x1 can now be calculated from Eq.(31).

The initial mass of the loaded projectile, Mo, is (15 + 3) lb,

or 18 lb, Wm being taken as the effective velocity wl listedM m

in line(ll The muzzle velocity is given in line(12). As a

matter of interest, the thrust coefficient is given in line(13);

it is calculated from Eq.(25a).

ge now assume other values of the propellant mass and

repeat the calculations. The results are shown in Figs. 6

and 8. Figure 6 is a plot of the muzzle velocity as a

function of propellant mass (expressed in pounds) for the

various assumed pressure ratios. Figure 8 represents plots of

the effective jet velocity and the thrust coefficient, each as

a function of pressure and two different weights of propellant

charge. Figure 9 gives the burning time as a function of the

pressure expansion ratio. Since we have assumed the same web

thickness in all cases, this curve is the same for all designs.

() Calculation of weight of TNT charge. -- The shell

structure is shown diagrammatically in Fig. 10. The shell

head is threaded on a flanged plate which forms one end of

the combustion chamber. The cylindrical portion of the com-

bustion chamber is welded to this plate, and the end plate

which carries the nozzle is threaded into the chamber body.

The following data are assumed. The shell nose and body are

made of 3/16-in. steel and the nozzle is made from steel of

thickness 1/16 in. The chamber and plates will have thick-

nesses that are determined by the pressure. The safe allowable
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stress is taken as 50,000 lb/in.2 in direct stress and

37,500 lb/in.2 in shearing stress. The threaded flanged plate

will have a flange 1/4-in. long and 3/16-in. thick as a mini-

mum, unless the plate thickness is larger,. in which case the

flange will be eliminated. The plate thickness will be calcul-

ated for direct and shearing stresses, and the thicker plate

will be chosen. The two plates will be assumed to be of the

same weight.

The radius of the shell ogive is taken as 6 calibers.

The surface of the nose is 44 in.2 , and the volumae is 25 in.
3

The weights per unit volume of the propellant and of

the TNT will both be taken as 0.058 lb/in.3  The weight per

unit volume of the steel is taken as 0.26 lb/in.3.

Shell nose and body. The nose weighs

44 x (3/16) x 0.28 = 2.31 lb.

The shell body weighs

IT x 3 x (3/16) x 0.28 1 = 0.494 1 lb,
5 5

where I 7is the length of the shell. The volume available for
s

2
TNT is 25+ 7T x (2 9) 1., or (25 + 5,31 1) in. 3  The weight

of TNT is 0,058 (25 + 5.31 1 ), !or (1.45 + 0.308 1 ) lb. The

-shell length 1 will be determined later.s

Weight of combustion chamber. The wall thickness is com-

puted from Clavarino's formula,!/

r2/rl f[(3 P)/(3-L P)] , (41)

7/ For a derivation of this formula see I.artjn, Textbook
of mechanics, V61,TII, "J echanics of materials", pp.176-1 0 ,
particularly exercise 214,
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where r2 [= 1.5 in.] is the outer radius of the chamber, r, is

the inner radius and T is the stress (lb/in.2 ). The least

acceptable thickness is assumed to be 1/32 in.

The length of the chamber, Ic, may be calculated from

the propellant weight. Assume as before that the outside and

inside diameters of the propellant are 3/4 in. and 3/16 in.,

respectively, and that 6 sticks are used. We first check the

density of loading. The net frontal area of the 6 sticks

is 2.00 in.2  At a pressure of 800 atmos the area of the

combustion chamber is 4.50 in.2  Hence the density of load-

ing is 2.00/4.50 or 0.445, which is an acceptable value. It

will be somewhat less than this for lower pressures.

The length 1 can then be found from the relation
c

m/ IlA,
S 61cp

where A [= 2.00 in. 2] is the cross-sectional area of the pro-p

pellant, P [= 0.058 lb/in.3] is the density of the propellant

and m is the mass of the propellant. The chamber masses m

as calculated'from the thickness r 2 - r, and the length 1C

are given in line (14 Table I.

End plates. To be on the safe side, the stresses in bend-

ing were calculated on the assumption that the plates were

simply supported at the edges. The maximum stress G is at

the center and is given by

= 1.25 P(r2/t )2, (42)

where r2 is the radius and t is the thickness of the plate.

For all cases it turned out that the bending stress was greater
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than the shearing stress and hence the plates were designed

for bending rather than shear. The weights of the two plates

are given in line (16), Table I.

Nozzle. The weight of the nozzle was calculated on the

assumption that the wall thickness was 1/16 in. and the cone

angle was 160. Allowing 20 percent increase in mass due to

the flange and fillets, one may express the weight in pounds

quite closely by the formula

Wn = 0.15 (Am - At). (43)

The calculated values are given in line (16), Table I.

Weight of TNT. At this point we can total up all the

weights except that for the shell body and the weight of TNT

located therein. The sum of the chamber, end plate and nozzle

weights is given in line (17), marked _W.

To get the total weight, we add to FW the weight of the

shell nose and body, which is (2.31 + 0.h9h 1 ) lb, and the

weight of TNT, which is 1.L lb for the TNT in the nose and

0.308 1 lb for that in the shell body. The grand total of

these components must be 15 lb; that is,

Y-W + (2.31+0.h94 is) + (1.45+0.308 1s) = 15 lb,

or

1 = 14,05 - 1.25 Ew.s

The values of IsI the length of the shell body, are given

in line(18 Knowiig this, the corresponding total weights of

TNT can be calculated and are given in line(19L

q i . /
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Discussion. -- The results of these calculations are sum-

marized graphically in Fig. 7. These curves show the TNT

load as a function of the propellant charge mC for various

values of the pressure. The dotted lines are the loci for

constant muzzle velocity. For example, for every point on the

dotted curve marked xi = 1000, the corresponding design has a

muzzle velocity of 1000 ft/sec. These curves were obtained by

projecting, from Fig. 6, the points of intersection of constant

x1-lines with constant P/P m-lines on to the corresponding pres-

sure lines of Fig. 7.

It appears that the largest load of TNT can be carried

when the pressure is somewhere between 50 and 25 atmos. The

weight of TNT will then be between h.75 and 5 lb. For pres-

sure either above or below this value, the "payload" decreases.

This is to be expected. For very low pressures, the thermal

efficiency is small and the propellant weight must be increased

to attain a given muzzle velocity. This means a longer com-

bustion chamber. For very high pressures, the thermal effi-

ciency increases very slowly but the weight of the chamber

goes up rapidly, and again the payload will decrease.

l. Performance of geometrically similar shells

These results are more general and therefore more widely

applicable than they may appear offhand. While the calcula-

tions were made for a shell of specific size, it is easy to

show that the conclusions as to optimum pressures apply to all

shells geometrically similar to one considered here.
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If the diameter and length are multiplied by the same

scale factor s, the available volume and weight of TNT will

vary as s3 . For constancy of energy (during fragmentation)

per unit mass of shell nose or body, the thickness of these

parts must therefore be increased by the same scale factor.

Hence the weight of the shell and its TNT load will vary as s3.

If all shells in the series are to have the same muzzle

velocity x2 , it is clear from Eq.(32) that the mass of the

propellant charge must likewise vary as s3, assuming that the

effective jet velocity is the same for all shells. Let us

see what this requires. Assume tentatively that all shells

operate at the same chamber pressure. Then, since the throat

area At and nozzle exit area A both vary as s 2, A m/At is

constant. Hence all nozzles have the sane expansion ratio and,

since the chamber pressure was assumed to be the same for all

designs, it follows that the effective jet velocity will be

the same for the entire series of shells. To sum up to this

point, we have the result that, in a series of geometrically

similar shells, all working at the same pressure, the muzzle

velocity and jet velocity will remain ccnstant provided that

the propellant weight is increased in proportion to the weight

of the shell.

The argument is not quite complete for, up to this point,

we have ignored the weight variations of the combustion chamber,

end plates and nozzles. From Eq.(1l), r2/r, is the same for

all shells for equal pressures and equal allowable stresses.
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Hence the weight of the combustion chamber, which is propor-

tional to 1c(r22_r,2), must vary as 33. Similarly, an

examination of Eq.(h2), which gives the stress in the end

plates, shows that the thickness t must vary as s forp

constant stress and hence the weight, being proportional

to r2
2tp must vary as s3. The nozzle weight will likewise

be seen to vary as s3 if we remember that Eq.(43) conceals,

in its numerical coefficient, the length of the nozzle. This

length will vary as s provided that the same taper is used in

all designs. From the foregoing arguments, it is evident that

if the optimum pressure is somewhere between 25 and 50 atmos

for a 3-in. shell, the same range of pressures will be the

optimum for all geometrically similar shells. Since the optimum

condition is not critical, we can expect that small deviations

in proportions from the ones assumed here will not materially

affect the conclusion as to the best pressure range.

There is one more point to notice. Constancy of pressure

requires that S/At be constant. Hence S varies as s2, But,

since the propellant mass m T varies as s3, the web thickness

D must vary as s. Again, since S is proportional to the

length of the propellant stick and the mean diameter of the

stick, the latter must also vary as s. From this it follows

that the burning time - will be proportional to the scale

factor but that the number of sticks of propellant is to be

kept the same for all designs.
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APPENDIX

List of Symbols Used

A Area of nozzle mouth (ft2 )
m

A Cross-sectional area of propellant (in.2 )P

A Area of nozzle throat (ft2)
t

b Propellant burning constant (ft/sec)

B Propellant burning constant [(ft/sec)/(lb/ft2)]

C Design parameter

c P Mean specific heat at constant pressure (Btu/slug OF)

c V Mean specific heat at constant volume (Btu/slug OF)

D Web thickness of propellant (ft)

E Efficiency

Ft Thrust for simple nozzle (Ib)

F2  Thrust for expanding nozzle (lb)

g Acceleration due to gravity (ft/sec2 )

H Heat of combustion of propellant (Btu/slug)

J Mechancial equivalent of heat [= 778 ft lb/Btu]

k Mass of gas discharged per unit time, per unit of

pressure [(slug/sec)/(lb/ft2)]

1c  Length of chamber (ft)

1 Length of shell body (ft)5

m Mass of propellant charge (slug)

m Mass burned per unit time (slug/sec)

mc  Mass of gas in chamber (slugs)

md Mass of gas discharged per unit time (slug/sec)
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M (t) Instantaneous mass of projectile (slug)
p

M Initial malt of projectile, including propellant
0 chwI'e (Aug)

M OD Initial mass of projectile, exclusive of pro-

pellant charge (slugs)

P Chamber pressure (lb/ft2 )

Pa Atmospheric pressure (lb/ft2 )

Pb Bomb pressure (lb/f t
2 )

Pe Equilibrium chamber pressure (lb/ft2 )

PM Pressure at nozzle mouth (lb/ft
2 )

P t Pressure at nozzle throat (lb/ft2 )

R Gas constant for an ideal gas (ft lb/slug OF)

r, Inner radius of combustion chamber (in.)

r2  Outer radius of combustion chamber (in.)

S Total burning surface (ft2)

t Time (sec)

t Thickness of end plates (in.)p

T Temperature of gas (0F absolute)

v Specific volume of gas (ft3/slug)

V Instantaneous volume of gas in chamber (ft3)

V0  Initial, or clearancevolume (ft3 )

V Initial volume of propellant (ft3)P

wm  Gas exit velocity (ft/sec)

w1 Effective gas exit velocity (ft/sec)
m

wt Gas velocity at nozzle throat (ft/sec)

Wn Weight of nozzle and flange (lb)

xVelocity of projectile at time t

Muzzle velocity of projectile (ft/sec)

I~~ I1 C L A



- -U"CLASFID

4 3 -

Z Fractional mass of propellant burned

04L Propellant constant

Ci' I Y1/m r

/Propellant constant (slug/lb sec)

_Adiabatic exponent for propellant gases

Density of propellant (slug/ft3 , lb/in.3)

X Ratio of chamber pressure to bomb pressure

Xe Equilibrium pressure ratio

o Initial pressure ratio

& Stress (lb/in.2)

IT Burning time (sec)
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